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Dampfblasen an festen Heizfl~ichen' 
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Abstraet-- ' fhis  note discusses criteria for bubble detachment in general and presents some criticism on the 
article 'Das Abreissen von Dampfblasen an festen Heizfl~ichen' of  J. Mitrovic [Int. J. Heat Mass Transfer 
26(7), 955-963 (1983)]. Force balances on a bubble as a whole should only be used in conjunction with 
some special bubble shape that only occurs at detachment if detachment criteria are to be derived. The 

criterion of  Mitrovic is not useful. 

1. INTRODUCTION 

As boiling heat transfer has a manifold occurrence in various 
industrial processes, fundamental knowledge of bubble 
detachment is important. Mitrovic [1] considered the rela- 
tively simple system of  a slowly growing, single bubble with 
its foot fixed in place without liquid flow and without the 
influence of  other bubbles. It was attempted in this article, 
entitled 'Das Abreissen yon Dampfblasen an festen Heiz- 
fl~ichen', to set up the governing force balances and to devise 
a detachment crite~5on, irrespective of  the orientation of 
heated plane wall with respect to gravity. 

In this note this analysis and criterion are analysed. The 
governing equation,,; are derived, both for the general case as 
for the thought experiment Mitrovic invented. Minor tech- 

1 nical errors, such a:~ a missing exponent ~ in (30) and (33) 
and a missing term ,7 in his (37) are not considered here. 

The detachment criteria that have been found in the litera- 
ture (see, for example, [2-6]) are studied and commented 
upon. 

2. FORCES BALANCES AND BUBBLE 
DETACHMENT 

2.1. Introduction 
Among the forces that act on a bubble that has a footing at a 
plane wall are two that are usually [3] recognised as stemming 
from the integral of  the static pressures over the bubble 
boundary that is o~.ly partially a liquid-gas interface. If the 
usual form of  the buoyancy force, Vg(pl-p~)g is retrieved 
from this integral a second force term results, the so-called 
buoyancy correction force. Here V denotes the system 
volume, g the magrdtude of the acceleration due to gravity, 
p the mass density and the indices g and 1 denote the gas or 
vapour and the liquid, respectively. This procedure is made 
more clear in the fo]~lowing. The main difference of  the equa- 
tions of  Mitrovic Ill, henceforth denoted by M, with those 
of  others [2, 3] seems to be the treatment of  this buoyancy 
correction term and of  the surface tension force, K~. The 
latter pulls the bubble towards the wall with component 
normal to the wall (only this component is used throughout 
this note if no vector-sign is used) given by : 

X~ ~r f a ' s i n ( f l ) d s  (1) 
Jfo ot 

where the integral is over the (1D) circumference of  the foot 
of  the bubble at the wall. Contact angle fl is defined in the 
liquid, see Fig. 1. In this note, as far as possible the same 
symbols are used as in M. 

The way M deals with K, and the buoyancy correction 
term is a bit obscured by the somewhat loose definitions of  
the important parameters K0 and K~0 that he uses. These 
definitions are therefore first made more precise and the 
consequences analysed. 

2.2. Definitions 
Mitrovic wanted to show that at detachment the pressure in 
the liquid in the proximity of  the bubble foot is equal to that 
of  the gas-vapour at the foot. Or, to put it differently, that 

AK0 = 0 

is a useful detachment criterion, with AK0 given by (again, 
only components normal to the wall are considered) 

AKo ~r ~ (pg_p,)dA.  (2) 
3ro ot 

M does not use (2) to define AK0. Just above his equation 
(27), henceforth denoted as (M27), he defines AKo as 
K o -  K~o. However, both Ko and Kio are not defined properly 
by M. If K~o is defined by (3) : 

def fro KI0 = Pl0 dA (3) 
ot 

equation (M26) for a truncated sphere immediately follows : 

(M26) Ki0 = nr2plo sin 2 ft. (4) 

Fig. 1. Schematic of  bubble on a horizontal wall and defi- 
nition of  the system boundary of  [1]. 
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NOMENCLATURE 

a acceleration 
A surface area 
y acceleration due to gravity 

unit vector in the direction of  gravity: ~/1~1 
K force 
m mass 
M Mitrovic [1] 
p pressure 
Ap pressure drop 
r radius 
r ,  radius of contact area, Fig. 1 
R radius of  curvature 
s 1D coordinate along circumference 
t time 
u velocity 
V volume 
z coordinate. 

Greek symbols 
fl contact angle, Fig. 1 

r/ dynamic viscosity 
tr surface tension 
p mass density. 

Subscripts 
1,2,3 corresponding to system 1, 2, 3, Figs. 2~4 
cap corresponding to the capillary at which the 

bubble is formed ; at the bubble foot 
d dynamic 
foot bubble foot 
g gas vapour content of  bubble (is without 

subscript in [1]) 
1 liquid 
10 liquid in the close proximity of  the bubble 

foot 
n in the normal direction 
0 in the plane of  the bubble foot 
rope corresponding to the rope 
z component in z-direction 
cr due to surface tension. 

Here Pt0 denotes the static liquid pressure at the wall just 
outside the bubble and fl the static contact angle, see e.g. Fig. 
1. Note that only bubbles are considered that are symmetrical 
around a vertical axis. Because of  (3) there is no need for a 
derivation of (4) like the one M presents, starting from his 
equation (25). 

So equation (3) seems to be a proper definition for K~o. 
Trying to find one for K0, let us put 

def fo  Ko = - ps  d ~ .  ~ (5)  
ot 

where the integral is over the bubble foot only and the minus 
sign is needed to make Ko positive since the normal, 3, is 
taken inward; dA = ~ dA and ~ = ~/lffl. See Fig. 1 that 
corresponds to Fig. 4 of  M, henceforth denoted as Fig. M4. 
By defining K10 in this way (2) is correct and M's  expression 
(24) for K0 is easily derived, as shown below : 

(M24) K0 = fvfpsdV 

In M and throughout this note it is assumed that the net 
acceleration of  the bubble, mg as, is negligible, i.e. that 

P e g  , ]  

Newton's second law 

msas = ~, Ki (8) 
i 

as applied to the system defined by the dotted line in Fig. 1, 
the bubble inside, with this assumption (7) reduces to 

frootPsd~',+ fa_jpsd~',+ f ypsdV=O (9) 

with # - f  denoting the gas-fluid interface. The term cos 
in (6) = (M24) accounts for the normal if the bubble is a 
truncated sphere. In that case (9) yields (M24). In other cases 
cos ct doesn't  intentionally account for the normal, but this 
loose definition in M has no consequences since other cases 
are not considered in M. 

So equation (5) seems to be a proper definition for K0. 

The combining of  equations (3) and (5) yields (2) as the 
proper definition of  AK0. Since K~0 is an imaginary quantity, 
AK0 at best can be regarded as the difference of  the forces 
experienced at the area of  the bubble foot just prior to and 
directly after bubble detachment. However, these two states 
of  bubble growth and detachment have, a priori, little to tell 
about the process of  detachment and the forces involved. 

It is noted that the definition (5) of  K0 can not be described 
as 'die Differenz zwischen den senkrecht auf die Krrper-  
unterlage (bubble foot) wirkenden Volumen- und Ober- 
fl/ichenkr/iften' (M, page 958, left column, Section 3.2). The 
volume force acts on the center of  mass and not on an area 
like the bubble foot]" since for a stationary, non-deforming 
bubble with mass mg 

fPsgdV=fpsadV=-~ t2 fps rdV  

d ~ 
dfl msRcM 

clef 
with RcM = 5 Ps ~ d V/m e as the location of  the center of  mass 
and ~ the position vector of  an arbitrary point in the bubble 
with acceleration ~. 

It is also noted that if a bubble is growing, the system 
boundary defined in Fig. 1 is all but ideal. The thing that is 
observed to detach from a plate is the fluid boundary or, 
to put it differently, Gibb's dividing surface. If  the system 
boundary is put in the liquid just outside the fluid-vapour 
interface, the attaching surface tension force appears 
explicitly in the governing equations. It is well known that 
each increase in interfacial boundary area corresponds to an 
increase in surface energy for which a force has to be applied. 
If  the action of  surface tension via the Laplace equation 
changes in time locally the gas pressure inside a bubble does 
so too. It would be difficult to find expressions for p in the 
system of  Fig. 1 that describe this without resorting to the 
fluid phase again, that is without inclusion of  the interface 
in the system. 

2.3. Analysis of the detachment criterion of Mitrovic 
Let the system boundary be taken outside the bubble and let 
Ka by definition represent the sum of  all dynamic forces on 

t This contradiction in terms also appears at other places 
in M. 
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the bubble including the added mass force. Note that P,~ is 
zero for a free, spherical bubble for reasons of  symmetry. 
Application of  Gauss' theorem yields for the force com- 
ponents on the bubble in the direction offf 

/ 1  1 \  2 
~ / K  i = 2nr,tr s i n f l -  t r ~  + ~22)7rr, 

-Vg(p,-pg)g-Kd. (10) 

Here Vg denotes the volume of  the bubble and R~ and R2 are 
the principle radii of  curvature at the bubble foot. The first 
term on the right-hand side (RHS) of  equation (10) is Ko, 
the second term the corrected buoyancy force. This term is 
needed to enable the application of  the theorem of  Gauss to 
the system boundary as if it were completely surrounded by 
liquid. The integral resulting from this theorem yields the 
Vgplg-term, since: 

f ga~_liquia lnterfa,~ pl d A := f ~nflre inteffacc pl d A 

--foot p' dA = V, Plg-- ffootP' dA" 

With negligible bubble acceleration, see equations (7). (8) 
and (10) combine t~ yield for a truncated sphere with radius 
r 

/ 1  1 \  2 O = 2 o ~ r s i n 2 f l - - ~ + ~ ) ~ r ,  

--~gr3(pl--Pg)'F(fl) (11) 

where F(fl)d~ ½+~ cosfl_¼cos3 ft. The RHS of  (11) would 
equal the RHS of  (M27) : 

(M27) AK0 := 2tr~rsin 2 fl-4ngr3(p,-pg)'F(fl) 

if the corrected buoyancy term would be added to (M27). So 
the bubble detaclmtent criterion of  M, AK0 --- 0 with AK0 
evaluated from (M27) is wrong even for his simplified case 
of  a truncated sphere for two reasons : 

(1) The corrected buoyancy term is missing. In slow 
growth bubble detachment from horizontal plane walls this 
term might be insignificant. In detachment from vertical 
plane walls it is not [3]. 

(2) The force balance (8) leading to (M27) should be 
satisfied at all times prior to detachment. It is just Newton's 
second law applied to an adhering bubble. Since such a force 
balance should be wdid at all times it can not indicate bubble 
detachment. 

Point 2 is missed by other authors as well (see, for example, 
[4]). It is further discussed in Section 2.5. 

The use of  AK0 = 0 as a detachment criterion leads to 
erroneous results. Equation (M13) for a bubble like the one 
of  Fig. 1 is an example. It is stated without a derivation and 
reads 

(M13) AK0 = 2~r ,c r s in f l -  Vg(pl--pg)g 

--l~+Apd~zr2,. (12) 

The dynamic pressare drop, Apd , is part of /ca  and unim- 
portant here since it will be neglected anyway. With the aid 
of  (10) (M13) is easily cast into the form 

1~ 2 2 
AK0 = ~i Ki+a(L\I¢, + R--"2) nr*+Ape'nr* 

2 1 1 

In the case of  slow bubble growth, see equation (7), the terms 

Y~iK~ and Apd are negligible compared to gravity and surface 
tension. M's  criterion thus leads to 

which can never be satisfied. 
Another example is the 'Gedanken',  thought, experiment 

of  M discussed in the next section. 

2.4. The Gedanken experiment of Mitrovic 
Mitrovic made some simplifications in his analysis of  the 
example of Fig. M6, see Fig. 2. The most important one is 
the neglection of the surface tension force defined by equa- 
tion (1). In the following, this example is studied with the 
force balances of  three systems in order to be able to value 
the importance of  K, and of  the buoyancy correction term. 

The total force on system 1 as defined by the dotted line 
in Fig. 2 is given by Newton's second law as 

ma = ~,~, = fp, dA+I(~opo+m ~. (13) 

The integral is over the system boundary excluding the rope 
with the normal taken inward in the system, as before. In 
(13) m denotes the total mass of  system 1 and Kro~ represents 
the force on the system by the rope. Pressure, p, comprises 
static and dynamic pressures (including added mass). The 
dynamic pressures are neglected since only hardly accelerated 
systems are considered to satisfy equation (7). Let z denote 
the vertical direction against gravity, normal to the plate (see 
Fig. 2). Application of  the theorem of  Gauss yields for the 
components in z-direction : 

maz = Vg(p,-ps)g+gror~+ V3(p~--p3)g. (14) 

Here index 3 refers to the plate and 

~ def 
Krop~ = Krop~z +PI" Arop¢ 

with Arop~ the cross-sectional area of the rope at the plate 
where Pl has to be evaluated. The Aropo-term in/~rop~ is due to 
the extending of  the integral in equation (13) to the entire 
system boundary. The value of  grope is selected in case (a) of  
M such that it balances the weight and the buoyancy of  the 
plate, V3(p~-p3)g (named K by M). The net force in M's  
case (a) (named AK by M) is therefore given by Vg(pl-pg)# 
as is correctly stated in (M35) : 

(M35) A K =  Vg(pt--pg)g. 

In M p denotes pg and Vg is written in terms of  an (equivalent) 
radius. 

Now consider system 2, the bubble, as defined by the 
dotted boundary in Fig. 3. Let K,z denote the z-component 

Fro~ 
r ................................... 1 ................................... i zT 

Fig. 2. Schematic of thought experiment and definition of  
system 1. 
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Surface tension 

System 2 

Fig. 3. Definition of  system 2 in the experiment of  Fig. 2. 

of  the adhering surface tension force at the bubble foot. 
System 2 experiences the following net force in z-direction : 

K~z + Vgg(p~ - pg) - (pg -p , )  Ac~p (15) 

where the minus sign of  the last term is due to the inner 
product  of  the unit  vector in z-direction with the normal  at 
the bubble foot;  Ac~p denotes the area of  the bubble foot. 
The last term is the corrected buoyancy term needed to 
enable the application of  the theorem of  Gauss  to the system 
boundary as if it were completely surrounded by liquid. 
The resulting integral yields the Vggp:term as before. The 
pressures in the corrected buoyancy term have to be evalu- 
ated at  Aca p. 

A similar procedure for system 3 as defined by the dotted 
line in Fig. 4, the plate, yields the following net force com- 
ponent  : 

grop,,-K~.z+V3g(pl-p3)+(pg-p,)Acap. (16) 

Once again the last term is a buoyancy correction term, here 
imaginarily to fill up the boundary of system 3 with liquid. 
Note that  the sum of  the forces components  on systems 2 
and 3 equals the force on system 1, as it should. 

Al though the system boundary drawn in Fig. M6 [for both 
cases (a) and (b) the same] suggests differently, M merely 
considers forces on the plate, so merely considers system 3 
as follows from ~entences as ' . . .  wirkt die Kugel auf  die 
P la t te . . . ' ,  found just  above (M35), p. 960. He probably 
assumes that  the Archimedes force acting on the center of  
mass  of  the bubble can be transferred to the point where the 
bubble touches the plate. A real bubble, however, is not  stiff, 
making such a transfer impossible. The action of  the external 
force, gravity, is on the center of  mass  as shown above in 
Section 2.2. So M seems to analyse system 3 but  omits the 
surface tension force since after using grope + V3g(Pl- P3) = 0 
for the net force here given by (16) he comes up with (M36) : 

(M36) A K =  (pg--pl)Ac~p. (17) 

This is wrong since K,~ is missing. 
M merely computes forces for a truncated sphere with 

radius r. In this specific case 

2or 
A~ap(pg--pO--K, ~ A~aPr --2~zrasin 2 (fl) = 0 (18) 

since A eap = g {r sin (fl)} 2. Note that pg exceeds p~ at the bub- 
ble foot. So in this case the second term balances the fourth 
in (16) and no net force is experienced by the plate at all. 
The magnitude of  the net force on the total system is that  of  
the net force on the bubble in this case. Only if the bubble 
boundary would be stiff this would lead to systems 2 and 3 
having the same acceleration. In reality, the bubble interface 

, ................ 

..............  LL..oo 
Fig. 4. Definition o f  system 3 in the experiment of  Fig. 2. 

is not  stiff and only the center of  mass  of  the bubble is a tittle 
accelerated. The bubble assumes a different shape that  allows 
the plate to be a little accelerated as well. If/('ro~ is taken to 
be zero, the big difference in mass  o f  systems 2 and 3 causes 
the bubble to become flattened and to assume a shape in 
which K, "g = 0, i.e. K,z = 0 (see Fig. 5 that  also defines the 
bubble height, h). The net force on the plate is in that  case 

(pg--pt) " Acap ~- (P l -Pg) ' ghn r~  

since the bubble is flat at the bottom, making pg ---p~+pLqh 
there. This force on the plate is produced by the bubble since 
(15) yields 

0 = Vzg(p,--pg)--(P,--p,)Acav 

if the bubble center of  mass  does not  move. If the bubble is 
flattened and the weight of  the plate is compensated by grope, 
like in M, the plate is accelerated by the net force 
(p, -- pg)" ghnr~. 

That  the truncated sphere is an exceptional case is also 
seen if the plate is placed vertically. Because of  the axial 
symmetry of  the truncated sphere 9" k~ = 0 in this case and 
no adhering force exists. Any bubble with an axisymmetrical 
shape would therefore escape immediately from the vertical 
wall. Nature  solves this anomaly by not  allowing for such a 
symmetry (see Fig. 6). 

2.5. Other detachment criteria 
One detachment criterion has  been found in the literature 
that is not  based on the force balance o f  an attached bubble 
as a whole. It was derived by Chesters [2, 5]. In this approach, 
bubble shapes are computed for bubbles generated at a 
sharp-edged capillary mou th  from the normal  pressure bal- 
ance at the interface and the static liquid pressure assuming 
some radius of  curvature at the top of  the bubble. The com- 
puted interface is convex near the top and changes to a 
concave shape at, roughly speaking, what could be the bubble 
foot. The radius of  the bubble foot, r , ,  is prescribed and 
equals the radius of  a given capillary. A family of  computed 
interfaces, all with different radii of  curvature at the top, is 
matched to r . .  If no shape fits bubble detachment is said to 
occur. 

This recipe to predict the bubble shape and volume at 
detachment requires the evaluation of  many  computat ions  
of  the same kind. It is not  a single, straightforward compu-  

Fig. 5. Schematic plan-view of  actual bubble flattening. 

~ g 

Fig. 6. Schematic of  bubble adhering on a cavity in a vertical 
wall. 
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tation. It can therefore be described as an a posteriori 
criterion. 

All other detach~aent criteria seem to be based on force 
balances of  an attached bubble as a whole. They therefore 
rely on the accurac'y, or rather the inaccuracy, with which 
the individual force terms are known just prior to detachment 
since Newton's second law on which the force balances are 
based should be sal:isfied at all times prior to detachment. 
This fact is utilised by van Helden et al. [3] to enlarge the 
accuracy with which the individual force components are 
known. 

It would be pos,sible to devise an a priori detachment 
criterion based on both the geometry of  a bubble and a force 
balance for the bubble as a whole if a certain bubble shape 
could be recognised as occurring only at detachment. See, 
for example, Fig. 7. Suppose that the shape with the neck 
perpendicular to the cavity mouth only occurs at detachment, 
when liquid is flowing towards this neck. Contact angle, fl, 
is not static in this situation but dynamic and equals n/2. For 
slow growth, the overall force balance analoguous to (11) is 
easily derived as : 

0 = 2nr ,a - (p~o-p lo)~zr2-4ngra(p l -pg  ) (19) 

where r represent:~ the volume equivalent radius cor- 
responding to the bubble volume above the neck. Since p~ is 
dynamic the norma]i stress balance has to be used to evaluate 
the corrected buoyancy term : 

. . . .  ~ o ~  p g - p ] - - a  -2 t / (n  V)n u~ 

with the normal, ~, taken inward into the bubble, see Fig. 7. 
Let a/On denote I~'V. For the special shape selected, 
Pg = Pl + tr/r . - 2rl(it/dn)un with (d/On) u, positive since close 
to the bubble the velocity is higher than that further away. 

As a first approximation it is possible to assume that 
the terms a/r .  and 2~l(a/~n)un are compensating each other, 
which would yield pg ~ p~. A better estimate would only be 
possible if the physics leading to this special geometry of  the 
attached bubble would be better understood. With the 

R 

Fig. 7. Schematic af  bubble detaching from a cavity in a 
horizontal wall. 

present approximations 

3 (20) r ~ ~r, 

It was experimentally determined by Blanchard and Syzdek 
[6] that (20) holds very well for air injection for small orifice 
radii, i.e. r ,  < 1.5 mm, provided the bubble frequency is 
below 30 bubbles per minute. This indicates that the neck 
shape as shown in Fig. 7 might indeed be occurring only 
at detachment in some circumstances. It is, however, not 
intended here to prove this. The above derivation merely 
exemplifies the way a force balance, if applied to a special 
geometry, can be used to indicate and predict detachment 
conditions. 

Note that consequence pg-p~ ~ 0 in this case resembles 
the detachment criterion of Mitrovic [1]. However, the 
detachment criterion in the above example is the selection of  
a specific bubble shape that only occurs at detachment. The 
allegation that the pressure jump at the interface of  the bub- 
ble neck is approximately zero is derived along different lines 
of  reasoning. 

3. CONCLUSIONS 

The analysis of  Mitrovic [1] is incorrect because of  the 
neglect of  the so-called corrected buoyancy force and an 
improper accounting for the surface tension force. His 
detachment criterion is not useful. 

Most detachment criteria in the literature seem to be based 
on a force balance of  a growing bubble as a whole. However, 
an appropriate force balance should be satisfied at all times 
prior to detachment. For this reason, a global force balance 
can only be used to devise a detachment criterion if a certain 
bubble shape can be found that occurs at detachment only. 

The criterion of  Chesters [2, 5] at present seems to mimic 
the physics of  bubble detachment best. 
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